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A CLASS OF PLANE SELF-SIMILAR MOTIONS OF A NON-NEWTONIAN FLUID 

WITH NONLINEAR THERMOPHYSICAL PROPERTIES 

O. N. Shablovskii UDC 532.517:536.24 

The plane self-similar solution of a set of complete equations for the dynamics 
of a nonlinearly viscous fluid and the energy equation is obtained analytically 
with the temperature dependence of the transfer coefficients taken into account. 

ble 
tion, 

i. INITIAL EQUATIONS AND NEW INDEPENDENT VARIABLES 

We take the generalized Z. P. Shul'man model of a nonlinearly viscoplastic incompressi- 
fluid as a basis and we write the equations of two-dimensional plane nonstationary mo- 
the continuity and heat balance equations [i] : 

u, + (plp + u S- xnlP)~ + (uv- ~izlP)y = 0, 

v, + (uv-  ~2/P)~ + (P/~ + ~-- ~lP)y = O, 

u ~ + v  u = O ,  p ~ c o n s t ,  

pcp (T t + uT~ + vr~) = (~,r~)x + (~ry)y + A~B, 

Tll = 2Bu~, "q~ = "~1 = B (uy + v~), "~  = 2Bvy, 
1 1 1 1 n 

A = [2u~ + 2v~ + (% + v~)~] -5-, B = [~o ~ A z + t~-~-I ~ A m 

p,----I x(T), )~=L(T), cp----cp(T). 

(1) 

(2) 

(3) 
(4) 

(5) 

We here assume p differentiable with respect to x, y, t and u, v, T twice differentiable with 
respect to x, y and once with respect to t. All these derivatives as well as the second 
mixed derivatives of the functions p, u, v, T in the arguments x, y, t are considered con- 
tinuous in the space--time domain under consideration. 

Equation (2) can be satisfied by taking 

v = - - ~ y ,  uv ~2 _ ~ ,  P--~2~ , v ~ = ~ _ q ~ .  
P 

We substitute the expression p from the last formula into (I), regroup the terms therein by 
using the equality ~tx = ~xt and satisfy the equation obtained as follows 
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u + ~-x = - -  Du, u~ --- v~ - -  ~l~ -I- ('c.~ - -  "ql)/P = Cu, uv - -  "q"./P = Dt  - -  C~. 

9 +  !" 
2 
g .  

o r  equivalently 

Here ~, q, C, D are auxiliary unknown functions of the arguments x, y, t. We now use the 
notation ~x~_~---u--Du, ~y=--v, ~t~-~=~+v 2 § p/p=~+E(t), where E(t) is 
arbitrary, and we eliminate the function G(x, y, t) from the number of dependent variables 
by using the condition of equality of the mixed second-order derivatives: 

--v~:%, - - v ~ = ~ u ,  % = ~ "  

Taking account of the initialassumption about the smoothness and differentiabillty of 
the functions characterizing the flow, we conclude that only two of these three equations are 
independent while the third is a result of their differentiation. We later consider the first 
two of these equations. 

Using the equation d~=~dx--vdg+~dL we perform the mutually one-to-one passage from the 
x, y plane to the plane of the new independent variables x, G by the formula 

x ! 

i ,t L c:~ ~__~_1~o d x -  ~ dt = const,  D (x, #) 
v ( ~ ,  Xo, to)  .: v ~ v 

Xo l o 

d~ 
Y §  ~,[" v (x ,  ~, t) - / J ~  0,  v ~ 0 ,  g o ~ c o n s t ,  ( 6 )  

~o 

where x o ,  
netted with the flow parameters for ~ = Go by the relations 

@~ ~ I @__t * I  ax  v ~o ot v ~o 

The differentiation operations are transformed as follows: 

O a a a o a a o 

Ox Ox' + ~ 6~ 09 6~ at at '  + ~ O~ 

Go, to are the initial values of the appropriate arguments wh~le yo(x, t) is con- 

x =  x', t = t ' .  ( 7 )  

After such a transformation, we obtain a system of seven equations for the functions 
p, u, v, T, n, C, D of the arguments x, G, t in place of (1)-(5). We omit writing these 
equations in the new variables. 

The condition v ~ 0 for mutual one-to-oneness indicates that flows for which the fluid 
velocity component along the OY axis retains a constant sign for t ~ to can be considered 
on the basis of this transformation. 

The hydrodynamic meaning of the function G(x, y, t) is that the nonpenetration condition 
is satisfied automatically along the line G = Go~const while the adhesion condition is satis- 
fied for DG(x , Go, t) = 0. 

2. SELF-SIMILAR VERSION OF THE TRANSFORMED MOTION EQUATIONS 

We assume the fluid yield point constant To-const and its thermophysical parameters de- 
pendent on the temperature according to a power law 

! [ 
-- ----I 

c v = coT-  ~, Ix = }xoT ~ , ;~ = goT ~ , P~I 5/= O, Co, ~o, )~o - -  const,  

T 6 [T' ,  T"]. (8)  

We furthermore assume a self-similar flow characterized by the dependences 

u - = u  (<z,[3), v = v ( c z ,  [~), ~ = ~ ( c z ,  ~), T - - - - ( t §  O(~z, ~), (9 )  

D = (t + l ~) t:(~,  ~), C = (t + t~) G(=, ~), ~ = (~ + r-) H(o~, ~), 

~z = x [~ - -  ~ l ----- const,  l =/= 0. ( l O )  
t - l -  P ' t + l 2, 
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The relationship between the self-similar variables a, 8, Y is obtained by using (6): 

y _ _ _ y _ _ = _ f  "d[~ + y , ( c , ) ,  [~ ,=cons t ,  dT, _ q~ I " 
Y-~- t + l ~ v(~, ~----~ 'da v ~, 

(n )  

Equations (1)-(5) transformed t o  the independent variables x, ~, t have the following 
form in the self-similar case (9)-(10): 

v~ + q~v~ = vq%, q:.v~ - -  av~, - -  [~v~ = v % ,  

u~ + q~u~ = vv~, Ov (u + I-I~) = B (v,~ + ~vo - -  vu~), 

u s - -  v ~ + vG~ - -  ~ Bvv~ = H~ + ~H~, 
9 

vH~ + F - -  aF,~ + F~ (~ - -  ~) = G~ + ~;G~, 

(12) 

�9 ]L 1 
n 

Co90 

1 I n ) ( ) , -  + q~0~)~+ ~o ( 1 - - 1  (0~+q~0~)q>0~+Lo I - - 1  (v0~)2+~,ov0(v0~)~+0 ~ (IXo0 ~`) " 
IX1 I~l . . . . . . .  

9 

= B (,z, f~) (t + t').  

Therefore, one self-slmilar version is indicated here for the complete equations of mo- 
tion and energy (1)-(5). A multilateral analysis of the self-slmilar motion regimes in 
boundary layers of rheologically complex fluids is given in [i]. The results of mathematical 
investigations of problems of nonlinearly viscous media motion are elucidated in [2]. 

3. EXAMPLE OF SELF-SIMILAR MOTION OF A NONLINEAR VISCOUS FLUID 

We use (12) to describe the flow of a nonlinearly viscous fluid (To = 0) by taking 
the ratio of the nonlinearity parameters (flow index) n/m = 2 and considering 2~, =--i: 

c p = c o T - ' ,  Ix----IxoT -2, ~=~ ,o  T-a, " % = 0 ,  co, IXo, ~,o--const, 

T 6 [T', T"]. (13) 

We construct the solution of (12) for a fluid possessing the properties (13) in the form 
of the functional series 

U = t/, 8 (Gr [~6, V = [J21~ 2 "~- V6 +  1 (G~) 1~8"~-I, V 2 = const, v~ =~ 0, v~ - -  0, (14)  
6--1 

z = 213 + ~q (a)  153 + ~8 (a )  138, 0 = 0il~ + 08-1 (a). I~ , 01 = c o n s t ,  01 ~ 0, 

F = F~_I(~ ) [~0-,, G = G8..1 (c0 [~ - ' ,  H = H8_1 (o0 [~ - l ,  

6 = 3 ,  4, 5 . . . .  , oo. 

Summation here is over the repeated subscript ~. In these expansions the v2, 0 ,  are arbi- 
trary nonzero constants, and ~s(~) is an arbitrary function. The coefficients of the series 
are calculated by using the linear recursion relations 

u~ = v 2 P2 - 5 2, - -  v~, d2=3F2--~ ' 0"2=0'  (15) 
3 

' V~6. u ~ =  0, ~ = v ~ ( 2 ~ v . , - . ~ ) ,  ~ = 3b_: (F~.~,--.~), b_O~ = ~o ~ v~ 

The next step in the calculations is 

u5 = 6v~v~ + 3u~ --6F~v#3,  v5 = 6F3v~ - -  2v.,u~, (16) 

4v~b_l f~  = 2q~v~.p - -  8bov~ - -  1 [be (5v~ F2 - -  6v2u~)l~, 
- 3 v . , .  

G3= 2H2v~ + 4F3- - t z / 3  + 2F~ (~x~ + 4 v~ 
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3pvzHn = 6bov~ ( Fuv2 - -  ua) + 4v.,b_~ (3v~F s - -  2u~), 

v~a~=2v~--~zv~--v~ I[-l~+ 4 bov~+2H~(2F~v.,--us)], 
P / 

0~= Cop 07+ 3 02 16 --4~oV~0.2 ] / -~ .  + - 7  o,,, ooo  = 

The quantities b_,, bo are determined by the expansion B = b~'~B ~-4. 

The general form of the formulas to compute the coefficients of the series (14) is 

un+~ = (k + 3) v2vk+x- 3v~u8 (k- -  1) Fa-1 + Rh+~ (e), (17) 

vk+l = (k - -1)  ( k -  2) v~ F ~ _ ~ -  v, ( k -  2) u~ + Lh+~ ((z), 

~,o0~ O~ = Q~ ((z), (18) 

O~_~ kfk_~ ~z + gu_~ + N~_~ (~z), F~ p (k - -  1) ~z 
= = g]~-'X + f~ + M~ (~z), (19) 

2 (k + 1) b'_, 

v~(k--  1) ~+a = Ph+l (r + (k + 2) vk+2, k ~ 3 .  (20) 

Expansion of the right sides in (17)-(20) is awkward, and not presented here. We just note 
that finding the coefficient Hk-x at each step is an intermediate link in the calculation, 
and after Hk-1 is eliminated, algebraic expressions Rk+2, Lk+1, Qk, Nk-x, Mk, Pk+~, k ~ 3 
are obtained that are comprised of already known coefficients found in the previous stages 
of the calculations. The coefficients Gk_x , F k are sought from first order ordinary differ- 
ential equations and contain one arbitrary constant of integration gk-~, fk- The coeffi- 
cients ~k+x(a) are determined by the finite algebraic expressions (20) in which the arbitrary 
function ~2(a) enters (it was taken equal to a constant ~2-const in the calculations per- 
formed). The integrals of the linear differential equations (17) contain arbitrary constants 
that we denote by ak+2 , bk+~, respectively. According to (18), for each coefficient @k-1 we 
have two constants of integration mk_~ , nk_,. Examination of (15)-(17) shows that us, v~ 
contain the arbitrary constants as, b~, f2, while the coefficients Uk+t , Vk+2 contain four 
arbitrary constants ak+1 , bk+2 , fk, gk-1, k ~ 3. Therefore, the fluid velocity, pressure 
and temperature are represented by the dependences 

u = (v~ ~) 63 + 076+2 (~) ~5+2 + a5~5, (21) 

V = L'2~ :z -}- V6+ 1 ((z) [~6-{-1 _~ b6+1[~6+1, u,,~ ~ O, v :~  O, 

P = E (t) + 2[3 + ~5-~ (c~) 13 6-~ , 
P 

/7 9"5--1 (t "+ l 2) T ~-- 01[J "-]- (Ii)5 ((X) ~6 + 0~m6_111~6--1 + 6-1t" , 01 :#: 0, 6 ~ 3, 

Ok+2 = .I/Ak+2do(" Vk+l = .i' ~)k +ld(Z: , (IDh = .f [.f 0"k~ ] dG~, k ~ 3. 
o o o o 

The functions Uk+2, Vk+t, Ck in this solution are homogeneous polynomials of the argument 
a, where Uk+2 and Vk+x contain the integration constants fk, gk-t that are in (19). The 
polynomials Uk+2, Pk are of degree 2k -- 3, while the polynomials Vk+t , Ok, "Irk are of degree 
2k--4, k ~ 3. 

Therefore, the series (21) characterize the self-similar hydrodynamic and thermal fields 
in a nonlinearly viscous fluid and determine the fluid velocity components to the accuracy 
of four arbitrary functions of the argument B, and the temperature to the accuracy of two 
arbitrary functions of the argument 8. 

In this class of solutions the influence of the convective terms of the heat balance 
equation appears in the computatio~ of the temperature, starting with the coefficient 06 (~), 
while the influence of the viscous energy dissipation starts with 07(a). 
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4. PROBLEM OF NONLINEARLY VISCOUS FLUID SPREADING THROUGH 

A DOMAIN WITH MOVING BOUNDARIES [3] 

Let us give a physical interpretation of the solution found. We take the domain [0, 
~t; 8o, 8,(a)] which corresponds, in the plane of the self-similar variables ~, y, to domain 
[0, ~; yo(a), yl(a)], where 0 < 6~ < i, 0 < 8o < 8, < i. 

Let us consider the problem of fluid motion in a domain with permeable moving boundar- 
ies, namely the case when satisfaction of the given conditions for the temperature and the 
velocity vector components on the two opposite boundaries a = 0, a = 6, is assured by the 
selection of the arbitrary functions contained in the solution (21). The two other 
boundaries y = 7o(a), y = 7~(a) are determined from the adhesion conditions, and the thermal 
hydrodynamic conditions thereon are dictated by the structure of the solution obtained. 

The transformation of the independent variables (6) is realized for v ~= O. The possi- 
bility of satisfying the adhesion condition on lines perpendicular to the OX axis is thereby 
eliminated. There is the same constraint in the self-similar case (ii) relative to the 
coordinate ~. 

Let us consider a nonisothermal flow for which flow slip relative to the wall exists on 
the boundaries x = xi, i = 0, i [i, 2]. We write the slip condition and the temperature 
jump in a form analogous to the corresponding conditions established in kinetic gas theory 

[41: 
x = x i : u = u  i, v = ~ i v = + ~ i T u ,  T = T ~ + t i T = - - X i v y ,  i = 0 ,  1. (22)  

We here consider the fixed wall xo = 0 impermeable: u ~ = 0, and the fluid flows through 
the moving diaphragm x = x,~6,(t t In), 6,Econst at the velocity u* ~ 6,; we assume the 
wall and diaphragm temperatures T~, i = 0, 1 known. 

In our self-similar case the conditions (22) have the same mode of writing: 

: = = = f :  o = ~ (o= + ~0~)  --oivO B, ( 2 3 )  

O-- O~ = t~ (0~ + ~0~) + z~vv~, O~ = 0~_3 ~8-3, i = O, 1, 

~ = a o = O : u = O ,  ~ = a l : u  = ut(fi) ,  ( 2 4 )  
i 

where 0w(~) are given analytic functions. 

We do not here consider the question of an experimental determination of the dependences 
of the slip and temperature jump conditions on the flow parameters. We give these coeffi- 
cients a priori so that they would possess an even dependence on the slip rate [2] and 
would satisfy the demands of self-similarity and of the boundary conditions (23) belonging 
to the class of solutions (21) for E(t)~0. The designated constraints will be satisfied, in 
particular, if we take 

~i = T - i  (~o~P - I  + ~liv~P-~), ~i = T- I (%~P - I  + ~I~v~P-5), ( 2 5 )  

~ = T -~ (OofP ~ + o,~v~P-~),  Z, = Zo, + Z~v~P-~,  

where the quantities ~r~, t ~ ,  Or~, Xr~, i = 0, i, r = 0, 1 are constants. 

Conditions (23)-(25) permit determination of the arbitrary functions contained in the 
solution (21). The condition of no flow at ~ = 0 yields ak = 0, k ~ 3. Substituting the 
expansion (21) into condition (23) and grouping terms with identical powers of 8 we obtain 
linear algebraic equations for the coefficients O,, f=, m= in the first stage of the cal- 
culations, where 8z # 0 for v= # 0; we have four linear algebraic equations for the quan- 
tities g=, fa, ms, n= in the second stage. Writing the mentioned equations and solving them 
are easily reproduced by assuming the formulas presented above for the expansion coefficients. 
For k~3 a recursion sequence is obtained from the systems of equations for the unknown 
constants gk, fk+*, mk+z, nk(the writing in general form is omitted here). All the equations 
obtained are linear and have a unique solution for va # 0. 

By satisfying the four conditions (23) in this manner, we see that the slip rate 
v(0, ~) = v=8 = + b6+,8 ~+* remains an arbitrary function related to the flow velocity u ~ = 
u(~,, 8) in a single-valued manner. The relation between the expansion coefficients for 
these functions in the argument 8 is easily traced by using (15)-(17). 
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We assume in the investigation of the convergence of the series (21) that the functions 
b6+~86+*, 0w(i)(8), i = 0, i are analytic in the argument ~6(0, |). It can then be shown by 
the method of the majorant [5] that the fluid temperature on the wall T (~ = (e,8 + 
n6_~86-~) (t + Z2) -* is also an analytic function in 8. 

Each of the series 

U6+2~ 8"~2 , V 6 + 1 ~  6-l-1 , (I) o[~ 8 , 0~m6_1[~ 6 - 1  (26) 

satisfies the inequalities 

IU~+., (o~)I ~ ~,+~, IVk+~ (o~)I < s~+t, lcI)~ (o~)I ~ sa, lo~m~_tl ~ e.-t, 

on the basis of the properties of homogeneous polynomials [6], and a majorizing number series 
~_,8 ~-* can be constructed that converges for ~6(0, 1) and there exists lira ~0_,__=0>0" 

This means that the series (26) converge uniformly for =6[0, ~), ~6(0, I), where 0 < ~, 
a~ ~ a ~ < i. 

We give the adhesion conditions on the other two permeable sections of the trapezoidal 
domain boundary [0, a,; Bo, 8,], which permit finding the dependences 

v~ (~-) = ~ ,  (o~) - -  ~ (~ ,  f~) , j - -  O, 1, ~ ,  (o~) --- c/o~, 

f~* 0 

czl~ _ v (o~, ,%) F~ (o~, ~ )  < ~o, I~ (0) = I~ ? , ~o ~ v~  I~ ~ �9 
dc~ 

Here ~.C(0, I) 
able values of the argument ~6[~., I). 

The solution of (27) should be examined for values of =El0, as), 0<=I~3<I, for which 
0 < ~ ~ ~] (~) < I, ~0 (~) ~ ~1 (~)" Such a number a3 exists since the solution of the problem is 
analytic functions. 

In order to assure satisfaction of the condition of mutual one-to-oneness v ~ 0 of the 
initial transformation of the independent variables, and the arbitrary function v(0, 8) = 
v28 = + b~+,8 ~+* (the fluid slip rate over a fixed wall) must be given sign-definite for 
~6[~., 1). Then from the continuity of the function v(a, 8) there follows the existence of 
the value ~6[0, ~),0<~i~=~<I, for which v(a, 8) 5 ~ 0. As a, should be taken the least 
of the numbers a2, as, a4. 

Since the interpretation of the solution with respect to the boundary conditions is re- 
alized by an inverse method for y = yj(a), j = 0, i, then the flow rate and temperature 
regime on these sections of the boundary are regulated by the structure of the solution (21) 
and are determined by the formulas 

I 
v~ (=, ~j) - [(u ~ + v ~ -- =~ -- ~v) (u = + v ~) 2 ]~=~j, (t + Z ~) Tj = 0 (=, ~j) 

The fluid pressure in this class of solutions is found to the accuracy of an arbitrary co- 
efficient ~2 in the expansion (14). 

(27) 

is a previously assigned number which denotes the lower boundary of the allow- 

NOTATION 

x, y, Cartesian coordinates; t, time; =, B, y, self-similar variables; u, v, projections 
of the velocity vector on the coordinate axes; p, pressure; T, temperature; p, fluid density; 
p, effective viscosity coefficient; ~, heat-conduction coefficient; c =pcp, specific heat 
of the fluid; ~, new independent variable; q, D, C, auxiliary unknown functions; ~, ~, T, 
X, slip and temperature jump coefficients. Subscripts: the independent variables as sub- 
scripts are partial differentiation; the dot above a function symbol is ordinary differenti- 
ation; 6 is the summation subscript. 
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CONVECTIVE HEATING OF A HALF-SPACE (NONSYMMETRIC CASE) 

L. N. Germanovich and I. D. Kill' UDC 536.2 

An exact solution of the heat-conduction problem for a half-space is obtained in 
a form convenient for calculations for an important case of a nonsymmetric tem- 
perature distribution of a medium bounding a half-space. 

The solution of the heat-conduction boundary-value problem 

OT - - = A T ( r > / 0 ,  0~<q)<2~, z > 0 ,  t > 0 ) ,  Tit=o---0, 
ot 

aT _ h T - -  exp ( - -  ~n cos n(p + "v~ sin mp 
Oz 

written in dimensionless coordinates [i] is sought in the form 

2 T = [un (r, z, t) cos n~ + Vn (r, Z, t) sin n~l 

Substituting (2) into (i) and following [i], we obtain 

where 

(z = 0, ~o = 0) 

(voCr, z, 0 = 0). 

t t 

u~ = ~ ~ z~ (~, ~) fo (z, ~) d~, ~. = ~n ~ In (~, ~) Io (z, ~) ~ ,  
o o 

In = 2 ,~ ~-~'( '+~ J,~ (~,r) d~,, 
0 

fo (z, z) = .  V ~-~h exp ( _  ~ z ~ ) - - h ~ e x p ( h ~ + h z ) e r f  c z+2hx2 V~" 

( l )  

(2) 

(3) 

(4) 

and Jn(x) is the Bessel function. Using the technique of summation over gamma functions 
r(x) [2] and the integral representation of Laguerre polynomials L~(x) [3], we find 

n n 

I~ (r, ~) = ---i-" ( x v ) ~  ye-~ 
r [ - ~ - + ~  

v~L~ (x), E (n + k)~ 
h=O 

1 y= 
I+~ 

r~y 
4 

(5) 

The case n = 0 corresponds to the axisymmetric problem (see [1]). For n = 2p (p = i, 
2, ...) we use the series for the generating function of the Laguerre polynomials [3]. We 
obtain 
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